Bactericidal Efficacy of Vital-Oxide®, Disinfectant Solution Against Salmonella Typhimurium and Brucella Ovis

Chun-Nam Cha1, Yeo-Eun Lee2, In-Jin Kang2, Chang-Yeul Yoo3, Sunjeong An1, Suk Kim, and Hu-Jang Lee*

Research Institute of Live Sciences, College of Veterinary Medicine, Gyeongsang National University, Chinju 600-701, Korea
1Engineering Research Institute, Department of Industrial Systems Engineering, Gyeongsang National University, Chinju 600-701, Korea
2Department of Environmental Health, Graduate School of Public Health, Gyeongsang National University, Chinju 660-751, Korea
3Department of Computer Information, Gyeongnam Provincial Namhae College, Namhae 668-801, Korea
4Department of Occupational Therapy, Inje University, Gimhae 621-749, Korea
(Received February 7, 2012/Revised February 24, 2012/Accepted March 12, 2012)

ABSTRACT - Salmonella spp. and Brucella spp. have caused a considerable disease of farmed animals and economic loss in animal farming and food industry. In this study, the disinfection efficacy of Vital-Oxide®, a commercial disinfectant, composed to chlorine dioxide, betaine hydrochloride, and propylene glycol was evaluated against S. typhimurium and Brucella ovis. A bactericidal efficacy test by broth dilution method was used to determine the lowest effective dilution of the disinfectant following exposure to test bacteria for 30 min at 4°C. Vital-Oxide® and test bacteria were diluted with distilled water (DW), hard water (HW) or organic matter suspension (OM) according to treatment condition. On OM condition, the bactericidal activity of Vital-Oxide® against S. typhimurium and Brucella ovis was lowered compared to that on HW condition. As Vital-Oxide® possesses bactericidal efficacy against animal pathogenic bacteria such as S. typhimurium and Brucella ovis, this disinfectant solution can be used to control the spread of bacterial diseases.

Key words: Vital-Oxide®, Salmonella typhimurium, Brucella ovis, Disinfectant efficacy

Salmonella extensively causes self-limiting enteritis, fatal infection in animals, food-borne infection, and typhoid fever in humans[1-4]. Salmonella infections are zoonotic disease and can be transferred between humans and nonhuman animals. Many infections are due to ingestion of contaminated food.[5] The etiologic agents of salmonellosis are Salmonella spp. characterized by motile, Gram-negative, rod-shaped bacteria and facultative intracellular pathogens that can multiply within professional and nonprofessional phagocytes.[6] Salmonella can survive for weeks outside a living body and are not destroyed by freezing.[5,6].

Salmonella typhimurium (S. typhimurium) is one of the most frequently isolated serotypes from pig farms, slaughtered swine and human foodborne illness.[7,8]. Also, S. typhimurium can survive in different reservoirs and is easily transmitted through water and poultry to humans.[9,10].

Brucellae are Gram-negative, facultative, and intracellular bacteria that can infect many species of animals and human. Based on differences in pathogenicity and host preference, six species are recognized within the genus Brucella.[11] B. abortus, B. melitensis and B. suis are responsible for bovine brucellosis, ovine and caprine brucellosis, and swine brucellosis, respectively. These three Brucella species may cause abortion in their hosts, which could result in huge economic losses. In addition, B. ovis is responsible for lamb epididymitis.[12]

As Salmonella and Brucella infections are becoming harder to control because of resistance to commonly used antibiotics, the effective cleaning and disinfection regimes are essential for the prevention of infections and outbreaks.[13,14]. The cleaning and disinfectant regimes depend on the proper use of biocides, and there is the concern that the resulting increased use of biocides in farming, food production, and hospital settings, and the home could contribute to the selection of antibiotic-resistant strains as some mechanisms of biocide resistance also confer antibiotic resistance.[15]. Biocides are often composed of a mixture of ingredients that
act upon a wide range of cellular mechanisms and targets, which makes it difficult for bacteria to become resistant to biocides13.

Salmonellosis and Brucellosis in livestock animals and human may cause enormous economic loss16,17. The stress on livestock animals caused by intensive farming practices, and the development of antibiotic-resistant bacteria are among the major reasons for the increased frequency of bacterial disease outbreaks19. Highly hygienic measures including the use of disinfectant are very effective for successful control of diseases from bacteria, fungi and parasites in farmed animals19,20. Several disinfectants including chlorine dioxide, betaine hydrochloride and propylene glycol have been used for decontamination of farmed animal and food borne diseases21-24. However, there is not the efficacy test for the disinfectant composed of chlorine dioxide, betaine hydrochloride and propylene glycol against bacterial animal diseases. Therefore, this study was carried out to examine bactericidal efficacy of a disinfectant solution against \textit{S. typhimurium} and \textit{Brucella ovis}.

Materials and methods

\textbf{Bacteria and culture}

The test bacteria, \textit{S. typhimurium} (G-B-14-21-62) and \textit{Brucella ovis} (ATCC 25840) were obtained from the Korean Veterinary Culture Collection (KVCC, Seoul, Korea). The strains were maintained as frozen glycerol stock. \textit{S. typhimurium} cells were cultured in Luria-Bertani (LB) broth containing 1.5% agar. \textit{Brucella ovis} were spread in Brucella broth containing 5% fetal bovine serum and incubated at 37°C under CO\textsubscript{2} condition.

\textbf{Disinfectant}

The active ingredients for Vital-Oxide®, the tested disinfectant solution, are chlorine dioxide (0.01% v/v), betaine hydrochloride (0.50% v/v) and propylene glycol (0.30% v/v). Vital-Oxide® was provided by Dae Han New Pharm Co. (Seoul, Korea). The disinfectant solution was stored in the dark in room temperature and prepared for dilution on the day of evaluation. Determination of the antimicrobial efficacy of the disinfectant was based on Animal, Plant and Fisheries Quarantine and Inspection Agency Regulation No. 2008-14, Korea.

\textbf{Diluents and treatment condition}

Testing was based on bactericidal effects of disinfectant diluents in three treatment conditions (distilled water (DW) condition, standard hard water (HW) condition, and organic matter (OM) condition), pathogen control (disinfectant negative control) and DW control (both disinfectant and pathogen negative control) in Table 1. HW, an ingredient of HW treatment condition, was made by adding anhydrous CaCl\textsubscript{2} 0.305 g and MgCl\textsubscript{2} \(6\text{H}_2\text{O}\) 0.139 g into one liter distilled water. Organic suspension, an ingredient of OM treatment condition, is a solution of 5% (w/v) yeast extract in HW. The test organisms were prepared by titration of each cultural broth into at least 108 CFU/ml viable organisms with the same kind of diluents of treatment condition.

\textbf{Experimental procedures}

For the efficacy test against \textit{S. typhimurium}, Vital-Oxide® was diluted 2.0, 2.25, 2.5, 2.75, and 3.0 times with DW and HW, and diluted 1.0, 1.1, 1.2, 1.3, and 1.4 times with OM, respectively. For the efficacy test against \textit{Brucella ovis}, Vital-Oxide® was also diluted 2.4, 2.7, 3.0, 3.3, and 3.6 times with DW, and diluted 2.0, 2.25, 2.5, 2.75, and 3.0 times with HW, and diluted 1.0, 1.1, 1.2, 1.3, and 1.4 times with OM, respectively.

To verify the lowest effective dilution of the disinfectant, five serial dilutions of the disinfectant were prepared and placed at 4°C prior to test reaction. 2.5 ml of each disinfectant dilution was mixed with the same amount of test organism followed by contact time of 30 min at 4°C. During this period, the mixture was shaken at 10 min interval. At the end of 30 min contact period, one ml of the mixture was neutralized with 9 ml of Nutrient broth containing 5% inactivated horse serum (Becton Dickinson & Co., MD, USA) at 37°C. 0.1 ml of the neutralized reaction mixture was subcultured into 10 ml of recovery each cultural broth at 37°C for 48 h in incubator. The valid dilution was determined that the greatest dilution showing no growth in two or more in the five replicates was confirmed. The final dilution time was statistically determined by a median value among three valid dilution of the triplicate test, but each value of which should be within 20% experimental error.

\textbf{Results}

Table 2 shows the final valid dilution of Vital-Oxide®.

\begin{table}[h]
\centering
\caption{Experimental design for the determination of the bactericidal efficacy of \textit{Vital-Oxide}® in Table 1. HW, an ingredient of HW treatment condition, was made by adding anhydrous CaCl\textsubscript{2} 0.305 g and MgCl\textsubscript{2} \(6\text{H}_2\text{O}\) 0.139 g into one liter distilled water. Organic suspension, an ingredient of OM treatment condition, is a solution of 5% (w/v) yeast extract in HW. The test organisms were prepared by titration of each cultural broth into at least 108 CFU/ml viable organisms with the same kind of diluents of treatment condition.}
\begin{tabular}{|c|c|c|c|c|c|}
\hline
\textbf{Treatment condition*} & \textbf{DM} & \textbf{HW} & \textbf{OM} & \textbf{Disinfectant} & \textbf{Bacteria} \\
\hline
\textbf{DW condition} & + & - & - & + & + \\
\textbf{HW condition} & - & + & - & + & + \\
\textbf{OM condition} & - & - & + & + & + \\
\textbf{Bacteria control} & - & + & - & - & + \\
\textbf{DW control} & + & - & - & - & - \\
\hline
\end{tabular}
\end{table}
Table 2. Final valid dilution of Vital-Oxide® against S. typhimurium and Brucella ovis

<table>
<thead>
<tr>
<th>Bacterial strains</th>
<th>Treatment condition</th>
<th>DW</th>
<th>HW</th>
<th>OM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DT 1 2 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. typhimurium</td>
<td>3.0 ○ ○ ○</td>
<td>3.0 ○ ○ ○</td>
<td>1.4 ○ ○ ○</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.75 ○ × ○</td>
<td>2.75 ○ ○ ×</td>
<td>1.3 ○ ○ ○</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5 × × ×</td>
<td>2.5 × × ×</td>
<td>1.2 ○ ○ ○</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.25 × × ×</td>
<td>2.25 × × ×</td>
<td>1.1 ○ × ×</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.0 × × ×</td>
<td>2.0 × × ×</td>
<td>1.0 × × ×</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid 2.5</td>
<td>Valid 2.5</td>
<td>Valid 1.1</td>
<td></td>
</tr>
<tr>
<td>Brucella ovis</td>
<td>3.6 ○ ○ ○</td>
<td>3.0 ○ ○ ○</td>
<td>1.4 ○ ○ ○</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.3 ○ × ○</td>
<td>2.75 ○ ○ ×</td>
<td>1.3 ○ ○ ○</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.0 × × ×</td>
<td>2.5 × × ×</td>
<td>1.2 ○ ○ ○</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.7 × × ×</td>
<td>2.25 × × ×</td>
<td>1.1 × ○ ×</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.4 × × ×</td>
<td>2.0 × × ×</td>
<td>1.0 × × ×</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid 3.0</td>
<td>Valid 2.5</td>
<td>Valid 1.1</td>
<td></td>
</tr>
</tbody>
</table>

*DW, distilled water; HW, standard hard water; OM, organic matter; DT, dilution time.
○, growth; ×, growth inhibition

Vital-Oxide® is a potential antibacterial disinfectant which was composed to chlorine dioxide, betaine hydrochloride and propylene glycol. On DW condition, S. typhimurium and B. ovis were completely inactivated with 2.5 and 3.0 fold dilutions of the disinfectant, respectively. When the bactericidal effect on HW condition was evaluated, the antibacterial activity of the disinfectant showed on 2.5 fold dilutions against both S. typhimurium and B. ovis. With the investigation of the bactericidal effect of the disinfectant on OM condition, both S. typhimurium and B. ovis were inactivated on 1.1 fold dilutions. Because organic material interferes with efficacy by either inactivating the disinfectant or blocking it from surface contact, the bactericidal activity of the disinfectant on the OM condition was lowered against animal pathogenic bacteria compared with DM or HW conditions.

Comparing the results of the disinfectant against two pathogenic bacteria in the present study, the bactericidal effect of Vital-Oxide® against B. ovis was higher than that against S. typhimurium on the DM condition and was same on the HW and OM condition.

Discussion

Vital-Oxide® is a potential antibacterial disinfectant which was composed of chlorine dioxide, betaine hydrochloride and propylene glycol. Chlorine dioxide has been used for food sanitization as an alternative of chlorine-based sanitizer. Aqueous chlorine dioxide has much higher oxidation capacity than chlorine and does not generate undesirable chemicals like trihalomethanes. The main action of chlorine dioxide consists in the oxidation of cellular constituents. Chlorine dioxide has a direct action on cell membranes, either altering (at high concentrations) or disrupting their permeability (at low concentrations) and then penetrating into the cell and disrupting the protein synthesis. At the various concentration of chlorine dioxide, the method of rapid bacterial kill appears to be the softening and destroying of the cell wall or viral envelope. However, human cells do not have cell walls and are apparently unaffected. Human skin and bodies are likely protected from the general oxidative effects of chlorine dioxide by the many reducing agents in human cells and blood. Filby et al. previously reported that in fish exposed to the chlorine dioxide-treated wastewater effluents, there was no induction of plasma vitellogenin or reduction in the weight of the fatpad, a secondary sex character in males. Daniel et al. exposed groups of 10 male and 10 female Sprague-Dawley rats to chlorine dioxide in drinking water for 90 days at concentrations of 0, 25, 50, 100, or 200 mg/l. No exposure-related deaths and consistent alterations in hematologic parameters were reported. But, exposure to over than 50 mg/l resulted in significant reductions in terminal body weights and water consumption. In the short-term toxicological studies of chlorine dioxide, a group of 10 healthy male adults drank 1,000 ml of a 0 or 24 mg/l chlorine dioxide solution. Neither study found any physiologically relevant alterations in general health, vital signs, serum clinical chemistry and hematologic parameters. Chang and Schneider reported that the treatment for 15 sec with chlorine dioxide-based disinfectant at the dose of 5 µg/ml reached a 3.0 logCFU/ml reduction on the surface of tomatoes contaminated with Salmonella. Trinetta et al. investigated the effectiveness of chlorine dioxide, ozone gas and e-beam irradiation treatments for inactivation of pathogens inoculated onto tomato, cantaloupe and lettuce seeds. The result suggested that chlorine dioxide, ozone gas and e-beam irradiation treatments
were 5.3, 4.4 and 4.0 log CFU/g reduction against Salmonella on contaminated tomato seeds, respectively. And Shams et al. 21) carried out the disinfectant efficacy test for the chlorine dioxide solution against Brucella species. At the concentration of 0.25 mg/l chlorine dioxide in portable water, Brucella species were inactivated by at least 3.0 logCFU/ml within 10 min.

With the consideration of previous studies, Vital-Oxide® is a more effective and safe disinfectant than chlorine and other treatments like ozone and beam irradiation against pathogenic bacteria. In this study, disinfectant efficacy of Vital-Oxide® has limitation that the results are based on in vitro test. Organic material in suspension (OM condition) could not represent all limitation that the results are based on.

As the efficacy of Vital-Oxide® against S. typhimurium and Brucella ovis was investigated in vitro, a controlled field trial is required to determine whether use of Vital-Oxide® will be able to reduce new pathogenic bacteria infection in animal farm and food industry area.

Conclusions

In animal farm and food industry, salmonellosis and brucellosis were very important diseases because of high mortality for farmed animals, zoonoses and economic loss. In the study of the bactericidal efficacy test of Vital-Oxide®, the results suggest that Vital-Oxide® has potential bactericidal activity against S. typhimurium and Brucella ovis. So, Vital-Oxide® composed to chlorine dioxide, betaine hydrochloride and propylene glycol can be used to control the spread of animal bacterial diseases like zoonoses.

Acknowledgements

This work was financially supported by Dae Han New Pharm Co., LTD. (Seoul, Korea).

References

12. Cloechkaert, A., Grayon, M., Greppinet, O. and Boundedine, K.S.: Classification of Brucella strains isolated from marine mam-

